Experimental design schemes for learning Boolean network models

نویسندگان

  • Nir Atias
  • Michal Gershenzon
  • Katia Labazin
  • Roded Sharan
چکیده

MOTIVATION A holy grail of biological research is a working model of the cell. Current modeling frameworks, especially in the protein-protein interaction domain, are mostly topological in nature, calling for stronger and more expressive network models. One promising alternative is logic-based or Boolean network modeling, which was successfully applied to model signaling regulatory circuits in human. Learning such models requires observing the system under a sufficient number of different conditions. To date, the amount of measured data is the main bottleneck in learning informative Boolean models, underscoring the need for efficient experimental design strategies. RESULTS We developed novel design approaches that greedily select an experiment to be performed so as to maximize the difference or the entropy in the results it induces with respect to current best-fit models. Unique to our maximum difference approach is the ability to account for all (possibly exponential number of) Boolean models displaying high fit to the available data. We applied both approaches to simulated and real data from the EFGR and IL1 signaling systems in human. We demonstrate the utility of the developed strategies in substantially improving on a random selection approach. Our design schemes highlight the redundancy in these datasets, leading up to 11-fold savings in the number of experiments to be performed. AVAILABILITY AND IMPLEMENTATION Source code will be made available upon acceptance of the manuscript.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Op-cbio140497 445..452

Motivation: A holy grail of biological research is a working model of the cell. Current modeling frameworks, especially in the protein–protein interaction domain, are mostly topological in nature, calling for stronger and more expressive network models. One promising alternative is logic-based or Boolean network modeling, which was successfully applied to model signaling regulatory circuits in ...

متن کامل

Learning Boolean logic models of signaling networks with ASP

Boolean networks provide a simple yet powerful qualitative modeling approach in systems biology. However, manual identification of logic rules underlying the system being studied is in most cases out of reach. Therefore, automated inference of Boolean logical networks from experimental data is a fundamental question in this field. This paper addresses the problem consisting of learning from a p...

متن کامل

Using the hybrid Taguchi experimental design method – TOPSIS to identify the most suitable artificial neural networks used in energy forecasting

The use of artificial neural networks (ANN) in forecasting has many applications. Appropriate design of ANN parameters enhances the performance and accuracy of neural network models.  Most studies use a trial and error approach in setting the value of ANN parameters. Other methods used to determine the best structure of a neural network only use a single evaluation criterion to determine the ap...

متن کامل

EVELOPMENT OF ANFIS-PSO, SVR-PSO, AND ANN-PSO HYBRID INTELLIGENT MODELS FOR PREDICTING THE COMPRESSIVE STRENGTH OF CONCRETE

Concrete is the second most consumed material after water and the most widely used construction material in the world. The compressive strength of concrete is one of its most important mechanical properties, which highly depends on its mix design. The present study uses the intelligent methods with instance-based learning ability to predict the compressive strength of concrete. To achieve this ...

متن کامل

What Can Boolean Networks Learn ?

We study the generalization abilities of networks that are composed of boolean nodes, i.e., nodes that implement only basic boolean functions: and, or and not. The majority of the network learning algorithms proposed so far generate networks where each node implements a threshold function and are inappropriate for the generation of boolean networks from training set data. We propose an algorith...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2014